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A weakly nonlinear theory, based on the combined amplitude–multiple timescale
expansion, is developed for the flow of an arbitrary fluid governed by the low-Mach-
number equations. The approach is shown to be different from the one conventionally
used for Boussinesq flows. The range of validity of the applied analysis is discussed and
shown to be sufficiently large. Results are presented for the natural convection flow of
air inside a closed differentially heated tall vertical cavity for a range of temperature
differences far beyond the region of validity of the Boussinesq approximation. The
issue of possible resonances of two different types is noted. The character of
bifurcations for the shear- and buoyancy-driven instabilities and their interaction is
investigated in detail. Lastly, the energy transfer mechanisms are analysed in
supercritical regimes.

1. Introduction

The classical problem of the flow in a differentially heated vertical cavity of high
aspect ratio has attracted the attention of the scientific community for decades. The
relatively simple solution of the Boussinesq equations for the basic flow has made this
problem the subject of many studies for various conditions (see Suslov & Paolucci
1995a for an extensive bibliography). In many practical applications, such as thermal
insulation systems in nuclear reactors, the typical temperature differences are of the
order of several hundred degrees Kelvin. Thus, neither density nor the other fluid
properties variations can be neglected. The attempt to use the conventional Boussinesq
approximation for the Navier–Stokes equations for such problems does not lead to a
physically correct solution. On the other hand, the low-Mach-number approximation
suggested by Paolucci (1982) allows one to take into account arbitrary property
variations for a general fluid. Although in the limit of very small temperature
differences the low-Mach-number solution recovers the Boussinesq results, the results
for any finite temperature variation are quanitatively, the more importantly
qualitatively, different (Chenoweth & Paolucci 1985, 1986). In addition, substantial
deviations from the Boussinesq results were also found in the linear stability study of
convection flows in an enclosure and in a vertical channel (Suslov & Paolucci 1995a,
b) under non-Boussinesq conditions. In these studies it is shown that for any finite
temperature difference between the walls the artificial symmetry of the flow obtained
using the Boussinesq equations is broken because of property variations. As a result,
the instability associated with the shear becomes oscillatory and thus of the Hopf-type
rather than the pitchfork-type predicted by the Boussinesq analysis (Mizushima &
Gotoh 1983). The second important finding is that at higher values of the temperature
difference between the walls a new type of instability which is associated with buoyancy
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occurs. This instability is demonstrated to be due to the nonlinear density variation
with temperature. The situation is similar to the one found in the Boussinesq limit for
large Prandtl numbers (Pr$ 12.45) (Fujimura & Mizushima 1991; Fujimura 1992a ;
Bergholz 1978; Chen & Pearlstein 1989) although the instabilities have a different
physical nature.

The weakly nonlinear analysis of the flow in a tall enclosure in the Boussinesq limit
shows that the symmetry of the solution is retained even when finite-amplitude
disturbances are present (Mizushima & Gotoh 1983). This guarantees that the total
mass conservation condition is satisfied automatically. This is not the case when the
nonlinear density variation is taken into account: the developing disturbances are not
symmetric anymore and the mass conservation condition is non-trivial in this case.
Another complication arising in the non-Boussinesq regime is related to the nonlinear
property variations. In contrast to the Boussinesq equations, the low-Mach-number
equations have a nonlinearity higher than quadratic. For this reason we have found it
important to present a detailed discussion of the expansion procedure leading to the
derivation of the amplitude equation for general non-Boussinesq flows. This is
included in Appendix A. Owing to the complicated structure of the expansions, most
of the algebra was performed using the computer algebra system Macsyma 419.0
(1995).

In the present work we use a combined amplitude expansion–multiple timescale
analysis. The essence of the method is to compute the small-amplitude expansion
corresponding to the most unstable eigenmodes in the linear problem for arbitrary
values of the temperature difference and the Grashof number. Separating different
orders of the disturbance amplitude one obtains a system of linear equations which
reveals the possibility of resonance between the mean flow and the infinite-wavelength
disturbance (similar to the one arising in Watson’s 1960 approach for subcritical flows
and discussed by Davey & Nguyen 1971 and resonance between the fundamental and
higher harmonics (discussed in detail in Fujimura & Mizushima 1987; Fujimura
1992b for the Boussinesq case). Although we discuss when these resonances occur, their
detailed analyses are beyond the scope of the present work. However, we note that
these resonances can be successfully analysed by the introduction of appropriate
resonant disturbance modes in the expansions. In general, this leads to the appearance
of an additional slow timescale associated with the resonance interaction, and modifies
the final form of the coupled Landau equations (see Fujimura & Mizushima 1987;
Fujimura 1992b for a discussion).

Our approach is close to Herbert’s (1983) method of amplitude expansion.
Originally, the derivation of the amplitude equation and evaluation of the first Landau
constant was based on the solvability condition applied to the equations at third order
in amplitude (Stuart 1960; Watson 1960; Stewartson & Stuart 1971). It was shown,
though, that the conventional solvability condition is meaningful only at the marginal
stability surface or in regions where the real amplification rate is substantially small (of
the order of amplitude squared). When the absolute value of the real amplification rate
is large enough the equations at third order are unconditionally solvable so that one
cannot obtain the first Landau constant in a standard way. In order to overcome this
difficulty Herbert (1983) proposed fixing the disturbance at one particular point within
the flow domain. He showed that when the real amplification rate tends to zero the
value of a Landau constant so defined approaches the one obtained from the standard
solvability condition. On other hand, as noted in Fujimura & Mizushima (1987), for
any finite value of the real amplification rate the value of the Landau constant obtained
using Herbert’s approach depends sensitively on the choice of the point. From this, one
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can deduce that the amplitude becomes essentially a function of the spatial location,
which contradicts the initial assumption that the disturbance amplitude is a function
of time only. In the present work, we show that by applying an appropriate
orthogonality condition, one can remove this inconsistency completely and for a given
normalization of linearized eigenfunctions obtain the Landau constant uniquely
regardless of the magnitude of the real amplification rate.

In the following sections we formulate the physical problem, discuss the form of the
appropriate expansions and equations arising at different orders of amplitude, define
the first Landau constant using the orthogonality condition, and derive the Landau
equation for the disturbance amplitude. We then discuss the range of validity of the
proposed analysis and present the results of the nonlinear non-Boussinesq convection
in a tall closed cavity as a function of the temperature difference between the vertical
walls. Finally, the two-mode interaction in the vicinity of the codimension-2 point is
studied using the coupled Landau equations.

2. Problem definition and governing equations

We consider the two-dimensional convection flow in a very tall rectangular cavity of
width H. The vertical walls are isothermal and maintained at the different temperatures
T$

h
and T$

c
respectively (asterisks denote dimensional quantities). The enclosure is

placed into a uniform gravitational field g which is parallel to the vertical walls. Since
we are interested primarily in the case of large temperature differences ∆T¯T$

h
®T$

c

" 0 the conventional Boussinesq equations are not applicable here and we adopt the
low-Mach-number equations (Paolucci 1982; Chenoweth & Paolucci 1986) in order to
describe such a flow:
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In writing (2) we used Stokes’ hypothesis to relate the coefficient of bulk viscosity to
the dynamic viscosity. Here u

i
¯ (u, �) and x

i
¯ (x, y) are velocity components and

coordinates in the horizontal and vertical directions respectively and n
i
¯ (0,®1) is the

unit vector in the direction of gravity. The equations are made non-dimensional by
the use of enclosure width H, reference temperature T

r
¯ (T$

h
T$

c
)}2, viscous speed

u
r
¯µ

r
}(ρ

r
H ), characteristic time t

r
¯H}u

r
, initial thermodynamic pressure P

r
which

would exist in the cavity with a stationary fluid at the reference temperature, and
characteristic value of the dynamic pressure Π

r
¯ ρ

r
u#
r
. All properties of the fluid are

non-dimensionalized using respective values evaluated at the reference temperature
and thermodynamic pressure.

The above system is complemented by the equation of state and property variations :

ρ¯ ρ(P,T ), c
p
¯ c

p
(P,T ), µ¯µ(P,T ), k¯k(P,T ), (3)
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where ρ is the fluid density, c
p

is the specific heat at constant pressure, µ is the dynamic
viscosity, k is the thermal conductivity, and β¯ (1}ρ) (¥ρ}¥T)r

P
is the coefficient of

volume expansion, all dependent on the local temperature T and thermodynamic
pressure P. Note that the thermodynamic pressure P, which is a function only of time,
is an additional unknown arising from the pressure separation which occurs in the low-
Mach-number expansion (Paolucci 1982), and the system of equations (1)–(3) is closed
by the global mass conservation condition

&
V

ρdV¯ 1, (4)

where V is the cavity volume.
The boundary conditions for the problem are

u¯ �¯ 0 and T¯ 1³ε at x¯ 0, 1, (5)

where ε is defined in (7). In this work we are concerned primarily with the statistically
steady flow sufficiently far from the ends of the cavity so that their effects can be
neglected. However, since the cavity is closed, the end effects are still felt through
condition (4). Furthermore, the no-penetration condition at the ends of the cavity
requires a zero mass flux at any horizontal section, and in particular away from the
ends. Allowing for periodicity in the vertical direction, this condition can be written as

&"
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λ/#

y!−
λ/#

ρ�dy1dx¯ 0, (6)

where y
!

is an arbitrary vertical location far enough from the ends and λ is the
wavelength. This condition will be seen to lead to the appearance of a uniform vertical
pressure gradient whenever the temperature difference between the walls is finite and
the flow loses symmetry due to property variations. Note that in the Boussinesq limit
both the total mass conservation (4) and zero mass flux condition (6) are satisfied
automatically due to the symmetry of the problem and subsequently no spatially
uniform vertical pressure gradient is induced.

The dimensionless parameters appearing in the problem are respectively the Grashof
number, the temperature difference, the Prandtl number, and a measure of fluid
resilience:
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where σ¯ (1}P) (¥P}¥T )rρ is the coefficient of tension, and γ¯ c
p
}c

v
is the ratio of

specific heats, all evaluated at the reference temperature.
Most of the analysis is done for an arbitrary fluid. However, in reporting specific

numerical results we assume that the working fluid in our problem is air with a
reference temperature T

r
¯ 300 K. Air is modelled as a calorically perfect gas which

obeys the equation of state
ρ¯P}T, (8)

with constant specific heat at constant pressure (see discussion in Suslov & Paolucci
1995a)

c
p
¯ 1, (9)

and the Sutherland laws for transport properties
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where, according to White (1974), Sµ ¯S$µ }T
r
¯ 0.368 and S

k
¯S$

k
}T

r
¯ 0.648. We

also take Pr¯ 0.71, γ
r
¯ 7}5, and (since it follows from the equation of state that

σ
r
¯ 1}T

r
) Γ¯ 2}7.

It has been shown in Chenoweth & Paolucci (1985) that for a tall enclosure a two-
dimensional steady parallel basic flow exists over most of the enclosure far enough
away from the top and bottom walls. This flow has been found in Suslov & Paolucci
(1995a) to be most unstable to two-dimensional infinitesimal disturbances. Since the
linear stability analysis predicts no three-dimensionality for the flow in an enclosure of
infinite transverse aspect ratio, in this work we limit ourselves to the analysis of two-
dimensional small-amplitude disturbances superimposed on the steady basic flow.
More detailed discussions of the governing equations, the basic flow solution, and its
linear stability are given in Chenoweth & Paolucci (1985, 1986) and Suslov & Paolucci
(1995a).

3. Expansion procedure

The system of Boussinesq equations conventionally used in convection problems has
a quadratic nonlinearity. In contrast, the character of the nonlinearity in the non-
Boussinesq system (1)–(6) is much more complicated owing to nonlinear properties
variations. For this reason we find it useful to derive rigorously the form of the
expansion which is needed for the weakly nonlinear analysis.

Assuming periodicity in the vertical direction, we look for the solution of system
(1)–(6) in the Fourier-decomposed form

W(t,x, y)¯ 3
¢

m=!

3
¢

n=−¢

εmw
mn

(t,x ; y)En(y), (11)

where W¯ (u, �,T,Π,P)T, ε is a formal small real expansion parameter, wW
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¯
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(t,x), Tq
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(t,x)Πq

mn
(t,x ; δ

!n
y), δ

!n
Pq
mn

(t))T, E¯ exp (iαy), and α is a
real wavenumber. We note that E−"¯E*, where the asterisk denotes the complex
conjugate, and, consequently, wW

m−n
¯wW $

mn
for our solution W to be real. Note also

that the dynamic pressure terms must depend on y in order to allow for a non-zero
average vertical pressure gradient which is necessary to enforce the zero average mass
flux condition (6), and that terms Pq

mn
are functions only of time since the

thermodynamic pressure is spatially uniform under low-Mach-number conditions.
In the limit εU 0 the expansion (11) should reduce to the steady basic flow solution
W

!
(x ; y)¯ (0, �

!
(x),T

!
(x), Π

!
(y),P

!
)T (see Suslov & Paolucci 1995a for detailed

distributions) :
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Since W
!

is uniform in the vertical direction, we must have wW
!!

3W
!

and w
!n

1
!
3 0.

Terms of order ε (m¯ 1) should give the linear stability results. Thus, the
wavenumber α corresponds to the value chosen for the linear problem. We first
investigate the nonlinear behaviour of the disturbance associated with this single mode
and, subsequently, consider the case when wW

"
rnr1

"
3 0. Later in this paper we generalize

the analysis for two-mode interactions.
The further derivation of the form of the expansion is quite involved and is given in

Appendix A. Truncating the general form of the resulting expansion (A12) at m¯ 3
and n¯ 2 we obtain
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Note that since the basic flow is steady and due to separation of variables in (17) P
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and each of the subscripts P or T denotes partial differentiation with respect to P
!!

or
T
!!

(x) of the corresponding property equation.
Next we introduce multiple timescales t
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The physical meaning of the multiple timescales will be discussed in §9.1.
If we now substitute the expansions (13)–(18) and (21) into system (1)–(6) we obtain

a set of equations corresponding to each order εm and mode En. Since the equations
for εmEn and εmE−n are just complex conjugates of each other we limit our
consideration to equations for positive values of n.

4. Basic flow

At order ε!E ! we recover the basic flow equations
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where D3d}dx. Since all terms on the left-hand side of (22) are independent of y, we
conclude that

¥Π
!!

}¥y¯Π{
!!

¯ const. (24)

Integrating this in conjunction with the first of equations (22) we obtain Π
!!

¯Π{
!!

y
const. A detailed discussion of the analytical and numerical basic flow solution, and
of the necessary conditions for its existence for the specific property variations (8)–(10)
is given in Chenoweth & Paolucci (1985, 1986) and Suslov & Paolucci (1995a).

5. Linear disturbances

At order ε"E " we obtain the linear perturbation equations which in matrix form are

AAα w
""

®
¥A
¥t
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Bw
""

¯ 0, (25)
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¯ (u
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, �
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¯ 0 at x¯ 0 and x¯ 1 and the elements
of Aα and B are given in Appendix B. This system of linear differential equations has
a solution of the form A(t)w
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!
, t

#
,…) eiσI
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¥A� }¥t
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¯σRA� , (26)

and σ¯σRiσI and w
""

are respectively the eigenvalue and eigenvector of the
generalized eigenvalue problem

Lα,σ
w

""
¯ 0, (27)

where we find it convenient to define the linear operator Lα,σ
3 (Aα®σB) and its

adjoint L†
α,σ

3 (A$α ®σ*B*)T which we will use later. This eigenvalue problem has been
solved using the specific property variations (8)–(10) for a wide range of Gr and ε in
Suslov & Paolucci (1995a). Since for our problem max r�

""
r&max (ru

""
r, rT

""
r) we

normalize the eigenvectors in such a way that

max
x

r�
""

r¯max
x

r�
!!

r (28)

so that we can judge the disturbance magnitude by its amplitude only.
The total mass in the enclosure and the average vertical mass flux are not affected

at this order owing to periodicity of the disturbance.
For convenience, in subsequent sections we redefine E¯ exp (iαy)U exp [iα(y®c

""
t
!
)],

where c
""

¯®σI}α is the wave speed according to linear theory, and consequently
we then have that A� UA.

6. Mean flow correction and second harmonic

(i) Second-order non-periodic terms (ε#E !) contribute to the equations for the mean
flow. They can be written in operator form

L
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, (29)

where w
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)T satisfies the total mass conservation and zero mass flux
conditions
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and boundary conditions u
#!

¯ �
#!

¯T
#!

¯ 0 at x¯ 0 and x¯ 1. As in §4, it can be
shown that Π

#!
(x ; y)¯Π!

#!
(x)Π{

#!
y, where Π{

#!
is the value of the spatially uniform

vertical dynamic pressure gradient induced by the disturbance. In the above equation,
we denote the real part of the expression by Re ²[´, and we note that at this order the
equations are real since the imaginary part cancels identically. The expressions for
f
#!

¯ ( f (")

#!
, f (#)

#!
, f ($)

#!
, f (%)

#!
)T are not given here since they are quite lengthy, but can be

found in Suslov (1997). If at least one of the eigenvalues of problem (27), say
σ
!
, corresponding to α¯ 0 is real for some set of parameters (ε,Gr) and

2σR(α)¯σ
!

(31)

for some finite value of α and the same set of parameters (ε,Gr), then system (29) is not
solvable and expansions (13)–(17) and (18) are not uniformly valid unless the
orthogonality condition ©w†

"!
, f

#!
ª¯ 0 is satisfied, where w†

"!
is the solution of the

adjoint eigenvalue problem L†

!,
σ
!

w†

"!
¯ 0 with corresponding boundary conditions, and

©w, fª¯&"

!

(w[f ) dx. (32)

This corresponds to the resonant interaction between the α¯ 0 disturbance w
"!

(not
necessarily the most unstable one), and the mean flow. In order to resolve this issue one
would have to assume that w

"!
1 0 from the very beginning (see that Lemma in

Appendix A) and include corresponding terms in the resulting expansions, but this is
beyond the scope of the present investigation. Subsequently, while we identify
parameter values (ε,Gr) for which (31) is satisfied, we will only discuss results for
parameter values for which (31) does not hold.

(ii) Collecting terms of order ε#E ", we simply get

¥A
¥t

"

Bw
""

¯ 0 or
¥A
¥t

"

¯ 0, (33)

since Bw
""

J 0. Thus disturbances do not evolve with respect to the slow time t
"
, so

A(t)¯A(t
!
, t

#
,…). (34)

Note that in the resonant case discussed above (when w
"!

1 0) equations (33) are not
homogeneous and the disturbance amplitude will then depend on the slow time t

"
.

(iii) Collecting ε#E # terms we obtain

L
#
α,#

σ w
##

¯ f
##

, (35)

where w
##

¯ (u
##

, �
##

,T
##

,Π
##

)T, u
##

¯ �
##

¯T
##

¯ 0 at x¯ 0 and x¯ 1 and the
components of f

##
¯ ( f (")

##
, f (#)

##
, f ($)

##
, f (%)

##
)T are given in Suslov (1997). The total mass

conservation and zero mass flux conditions are satisfied automatically because of the
periodicity of the second harmonic.

Equation (35) reveals another unsolvable case : the 1:2 resonance between the
fundamental and second-harmonic modes. The resonance will arise if for some fixed
pair of parameters (ε,Gr), 2σ is one of the eigenvalues of problem (27) corresponding
to wavenumber 2α. This resonance can be dealt with if we allow w

"#
1 0 (see the

Lemma in Appendix A). This also will lead to the dependence of the amplitude on the
slow time t

"
. Summarizing, we state both resonance conditions as

σI
i
(0)¯ 0, σR

i
(0)¯ 2σR

j
(α) (36)
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and
σ
i
(2α)¯ 2σ

j
(α) (37)

for some i and j and fixed parameters (ε,Gr). Both conditions can be easily satisfied in
the Boussinesq limit since then, according to linear theory, the most unstable
disturbances are found to be stationary, i.e. the eigenvalues σ

i
are real. The 1:2

resonant interactions in the Boussinesq case were investigated in Fujimura &
Mizushima (1987) and Fujimura 1992(b). Analysis of the resulting coupled amplitude
equations predicts the dominating character of shorter-wavelength disturbances and
the resonant decay of longer-wavelength disturbances even in linearly unstable regions.
These results are consistent with computational results obtained using a Fourier–
Chebyshev collocation technique reported in Mizushima & Saito (1987) and
Mizushima (1990). The possibility of the above resonances in the non-Boussinesq case
is discussed in later sections.

7. Landau equation

As shown above, when the disturbance amplitude is very small, it grows
exponentially in the linearly unstable regions. In order to examine the possible
saturation of the amplitude, we proceed to look at the equations that arise at order
ε$E " :

ArAr#(Lα,σ
®2σRB)w

$"
¯

¥A
¥t

#

Bw
""

A rAr# f
$"

, (38)

where w
$"

¯ (u
$"

, �
$"

,T
$"

,Π
$"

)T, u
$"

¯ �
$"

¯T
$"

¯ 0 and x¯ 0 and x¯ 1 and the
components of the vector f

$"
¯ ( f (")

$"
, f (#)

$"
, f ($)

$"
, f (%)

$"
)T are given in Suslov (1997).

The linear system (38) is unconditionally solvable if σ2σR is not an eigenvalue of
problem (27). This is typically true when the parameters (ε,Gr) are chosen so as not to
fall on the marginal stability surface (i.e. σR1 0). Since no solvability condition is
necessary in this case to find a solution of (38), the definition of the Landau constant
relating the disturbance amplitude and its slow time derivative requires some other
condition. In the context of the amplitude expansion approach, this issue was first
addressed by Herbert (1983) and later discussed by Fujimura (1988). Herbert proposed
fixing the disturbance at some arbitrarily chosen location x

!
so as to be completely

defined by the product Aw
""

(x
!
). Subsequently, all other terms in the expansion vanish

at this point. As shown in Appendix C, this procedure is inherently inconsistent. For
this reason here we propose a different approach. Using the linearity of the problem,
when σR1 0, we look for the solution in the form

w
$"

¯ χ
"
χ

#
, (39)

where χ
",#

¯ (uχ
",#

, �χ
",#

,Tχ
",#

,Πχ
",#

)T are solutions of the following problems:

(Lα,σ
®2σRB) χ

"
¯ f

$"
, (40)

and

ArAr#(Lα,σ
®2σRB) χ

#
¯

¥A
¥t

#

Bw
""

, (41)

with uχ
",#

¯ �χ
",#

¯Tχ
",#

¯ 0 at x¯ 0 and x¯ 1. System (40) is solvable for any right-
hand side. In addition, using separation of variables, one can see that system (41) is
solvable only if

¥A}¥t
#
¯KA rAr#, (42)
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where K¯KRiKI is the complex separation constant (usually referred to as the first
Landau constant). Then, using (27), we see that system (41) has the unique solution

χ
#
¯®

K

2σR
w

""
. (43)

Next, we project the solution of (40) on the w
""

-direction and write it as

χ
"
¯ rw

""
χW

"
, (44)

where

r¯
©w

""
, χ

"
ª

©w
""

,w
""

ª
and χW

"
vw

""
. (45)

Combining terms in (13)–(17) corresponding to mode E " we obtain

εA²[1ε#rA#r (r®K}2σR)]w
""

ε# rAr#χW
"
…´E ". (46)

In order to remove the redundancy in the ε$ terms, we should choose

K¯ 2σRr. (47)

Note that any other choice of the Landau constant destroys the uniform validity of the
expansion (A12) in the limit σRU 0. Furthermore, we will now show that definition
(47) of the Landau constant in the limit σRU 0 is identical to the one obtained from
the conventional solvability condition, i.e. we show that

lim
σRU

!

K¯®©w†

""
, f

$"
ª, (48)

where w†

""
is the solution of the problem adjoint to (27) and defined as

L†
α,σ

w†

""
¯ 0 (49)

with corresponding boundary conditions. Considering the inner product of w†

""
with

(38), taking into account the normalization for the adjoint eigenvector

©w†

""
,Bw

""
ª¯ 1 (50)

and condition (42), and using (49), we obtain

®2σR©w†

""
,Bw

$"
ª¯K©w†

""
, f

$"
ª , (51)

or, using (39), (43), (44), and (47),

K¯®©w†

""
, f

$"
ª®2σR©w†

""
,BχW

"
ª. (52)

The character of the singularity in (46) when σRU 0 suggests that the function χ
"
can

be decomposed as

χ
"
¯

1

σR
χ!

"
χ"

"
, (53)

where χ!

"
and χ"

"
are bounded and non-zero as σRU 0. Substituting (53) into (40) we

obtain

1

σR
Lα,σ

χ!

"
®2Bχ!

"
Lα,σ

χ"

"
®2σRBχ"

"
¯ f

$"
. (54)

Taking the limit σRU 0 we conclude that the condition

lim
σRU

!

1

σR
Lα,σ

χ!

"
!¢ (55)
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is necessary for (54) to be solvable. This is possible only if

lim
σRU

!

Lα,σ
χ!

"
¯ 0 (56)

and then χ!

"
is non-trivial if and only if

lim
σRU

!

χ!

"
¯ r

"
w

""
, (57)

where r
"

is some non-zero constant. Then term-by-term comparison of (44) and (53)
gives that χh

"
C χ"

"
and, consequently, is bounded, and r¯O(1}σR) as σRU 0, so that

finally from (52) we easily obtain (48). Note that although the Landau constant defined
through Herbert’s (1983) approach as σRU 0 tends to the same limit (48), in general it
differs from the one defined above for any finite value of σR.

In contrast to Herbert’s approach, for the chosen normalization (28) the above
procedure results in a unique definition of the Landau constant on the marginal
stability surface as well as away from it since the projection r is defined uniquely. In
other words, in the present approach we have eliminated the source of inconsistency
arising in Herbert’s approach from the attempt to define a global quantity such as the
Landau constant using some local property of the spatial solution (i.e. the value at an
arbitrarily chosen point). The present approach also completely removes the
redundancy in expansion (46), guarantees its uniformity for small amplitudes in the
resonance-free regions of the parameter space, and shows that the fundamental
disturbance mode w

""
necessarily induces its own orthogonal distortion (χh

"
) at higher

orders of ε which cannot be removed by the normalization of the disturbance
amplitude as assumed by Herbert.

Reconstituting the time derivative of the amplitude, we now have

dA

dt
¯

¥A
¥t

!

ε#
¥A
¥t

#

…¯σRAε#KA rAr#… . (58)

Noting that ε is just a formal expansion parameter used to distinguish different orders
in amplitude, we redefine εAUA, and neglecting higher orders of amplitude we obtain
the Landau equation

dA}dt¯σRAKA rAr#. (59)

Since we can write A¯ rAreiθ, then this equation is equivalent to two equations for the
modulus and phase:

d rAr}dt¯σR rArKR rAr$, (60)

dθ}dt¯KI rAr#. (61)

Equation (60) can have two equilibrium solutions. The first, rA
e
r¯ 0, always exists, but

is stable only if σR! 0. The second equilibrium solution

rA
e
r¯ (®σR}KR)"/# (62)

only exists if σR}KR! 0, and is stable if σR" 0. If this last equilibrium solution exists
for σR! 0 (KR" 0), i.e. before linear instability occurs, the bifurcation is subcritical,
otherwise it is supercritical. Note that the cubic Landau equation (60) does not provide
any stable finite-amplitude equilibrium for a subcritical bifurcation. In order to obtain
a stable equilibrium solution in such case, it is necessary to carry the analysis to higher
orders in amplitude. This will not be done in this work.
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8. Two-mode interactions

The above analysis is not adequate in the vicinity of the codimension-2 point
(εk,Gr

c
(εk)) where shear and buoyant disturbance modes interact with each other

(Suslov & Paolucci 1995b). In this situation the truncated amplitude expansions
(13)–(17), again up to third order in amplitude, are generalized to

w(x, y, t)¯w
!!!

(x)rA
"
(t)r#w(")

#!!
(x)rA

#
(t)r#w(#)

#!!
(x)

²[A
"
(t) (w

""!
(x)rA

"
(t)r#w(")

$"!
(x)rA

#
(t)r#w(#)

$"!
(x))E

"
A#

"
(t)w

##!
(x)E #

"

[A
#
(t) (w

"!"
(x)rA

"
(t)r#w(")

$!"
(x)rA

#
(t)r#w(#)

$!"
(x))E

#
A#

#
(t)w

#!#
(x)E #

#

A
"
(t)A$

#
(t)w

#"−"
(x)E

"
E$

#
A

"
(t)A

#
(t)w

#""
(x)E

"
E

#
]c.c.´, (63)

Π(x, y, t)¯Π{
!!!

yrA
"
(t)r#(Π(")

#!!
(x)Π{ (")

#!!
y)rA

#
(t)r#(Π(#)

#!!
(x)Π{ (#)

#!!
y)

²[A
#
(t) (Π

"!"
(x)rA

"
(t)r#Π(")

$!"
(x)rA

#
(t)r#Π(#)

$!"
(x))E

#
A#

#
(t)Π

#!#
(x)E #

#

[A
"
(t) (Π

""!
(x)rA

"
(t)r#Π(")

$"!
(x)rA

#
(t)r#Π(#)

$"!
(x))E

"
A#

"
(t)Π

##!
(x)E #

"

A
"
(t)A$

#
(t)Π

#"−"
(x)E

"
E$

#
A

"
(t)A

#
(t)Π

#""
(x)E

"
E

#
]c.c.´, (64)

P(t)¯P
!!!

rA
"
(t)r#P(")

#!!
rA

#
(t)r#P(#)

#!!
, (65)

where w represents u, �, or T, the first index corresponds to the order of the amplitude,
and the second and third indices to powers of E

"
¯ exp [iα

"
(y®c

""!
t
!
)] and E

#
¯

exp [iα
#
(y®c

"!"
t
!
)], respectively. Wave speeds, according to linear theory, are defined

as c
""!

¯®σI

"
}α

"
and c

"!"
¯®σI

#
}α

#
. Superscripts (1) and (2) are used to indicate

the terms associated with the mean flow correction corresponding to the shear and
buoyant modes respectively. The two-mode interactions do not add additional terms
to the expansion (65) for the thermodynamic pressure. These expansions are complete
up to the third order in amplitude for Fourier modes E

"
and E

#
provided that no

wavenumber resonance is present at least up to third order, i.e.

α
"
1 nα

#
, n¯ 1, 2, 3. (66)

The property vector g¯ (ρ, c
p
,µ,k)T is expanded similarly :

g
""!

¯g
!!!T

T
""!

,

g(")

#!!
¯g

!!!T
T (")

#!!
g

!!!TT
rT

""!
r#g

!!!P
P(")

#!!
,

g
##!

¯g
!!!T

T
##!

"

#
g
!!!TT

T #

""!
,

g(")

$"!
¯g

!!!T
T(")

$"!
g

!!!TT
(T

""!
T (")

#!!
T$

""!
T
##!

)"

#
g
!!!TTT

T
""!

rT
""!

r#

g
!!!TP

T
""!

P(")

#!!
,

g
"!"

¯g
!!!T

T
"!"

,

g(#)

#!!
¯g

!!!T
T (#)

#!!
g

!!!TT
rT

"!"
r#g

!!!P
P(#)

#!!
,

g
#!#

¯g
!!!T

T
#!#

"

#
g
!!!TT

T #

"!"
,

g(#)

$!"
¯g

!!!T
T (#)

$"!
g

!!!TT
(T

"!"
T (#)

#!!
T$

"!"
T
#!#

)

"

#
g
!!!TTT

T
"!"

rT
"!"

r#g
!!!TP

T
"!"

P(#)

#!!
,

g
#"−"

¯g
!!!T

T
#"−"

g
!!!TT

T
""!

T$

"!"
,

g
#""

¯g
!!!T

T
#""

g
!!!TT

T
""!

T
"!"

,

g(#)

$"!
¯g

!!!T
T (#)

$"!
g

!!!TT
(T

""!
T (#)

#!!
T

"!"
T
#"−"

T$

"!"
T
#""

)g
!!!TTT

T
""!

rT
"!"

r#

g
!!!TP

T
""!

P(#)

#!!
,

g(")

$!"
¯g

!!!T
T (")

$!"
g

!!!TT
(T

"!"
T (")

#!!
T

""!
T$

#"−"
T$

""!
T
#""

)g
!!!TTT

T
"!"

rT
""!

r#

g
!!!TP

T
"!"

P(")

#!!
.

5

6

7

8

(67)
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Equations for each separate mode up to second order in amplitude were considered in
the previous sections. The equations at second order in amplitude responsible for mode
coupling can be written as

Lα
"−

α
#,

σ
"−

σ
#

w
#"−"

¯ f
#"−"

, Lα
"+

α
#,

σ
"+

σ
#

w
#""

¯ f
#""

, (68)

where w
#"−"

¯ (u
#"−"

, �
#"−"

,T
#"−"

,Π
#"−"

)T, w
#""

¯ (u
#""

, �
#""

,T
#""

,Π
#""

)T, u
#"−"

¯ �
#"−"

¯
T
#"−"

¯ u
#""

¯ �
#""

¯T
#""

¯ 0 at x¯ 0 and x¯ 1 and the components of f
#"−"

¯ ( f (")

#"−"
,

f (#)

#"−#
, f ($)

#"−"
, f (%)

#"−"
)T and f

#""
¯ ( f (")

#""
, f (#)

#""
, f ($)

#""
, f (%)

#""
)T are given in Suslov (1997).

At third order in amplitude, for the Fourier mode E
"
we now obtain the system of

equations

A
"
rA

"
r#(Lα

",
σ
"

®2σR

"
B)w(")

$"!
A

"
rA

#
r#(Lα

",
σ
"

®2σR

#
B)w(#)

$"!

¯
¥A

"

¥t
#

Bw
""!

A
"
(rA

"
r# f (")

$"!
rA

#
r# f (#)

$"!
), (69)

where f (")

$"!
(previously named f

$"
) and f (#)

$"!
are given in Suslov (1997). A similar system

is obtained for the Fourier mode E
#
. Then application of the theory derived earlier and

reconstitution of the full time derivative lead to the coupled Landau equations

dA
i

dt
¯σR

i
A

"
3

#

j="

K
ij
A

i
rA

j
r#, i¯ 1, 2. (70)

The Landau constants are defined as

K
ij
¯ 2σR

j

©w
"
δ
i,"

δ
i,#

, χ
"ij

ª

©w
"
δ
i,"

δ
i,#

,w
"
δ
i,"

δ
i,#

ª
, (71)

where δ
i,j

is the Kronecker symbol and χ
"ij

are solutions of the associated problems

(Lα
i,

σ
i

®2σR
j

B) χ
"ij

¯ f ( j)

$
δ
i,"

δ
i,#

, i, j¯ 1, 2. (72)

By introducing polar notation A
j
¯ rA

j
r eiθj, j¯ 1, 2, the coupled Landau equations are

rewritten as
drA

j
r}dt¯ rA

j
r (σR

j
KR

j"
rA

"
r#KR

j#
rA

#
r#), (73)

dθ
j
}dt¯KI

j"
rA

"
r#KI

j#
rA

#
r#. (74)

We distinguish four equilibrium solutions of equation (73) :

(i) rA
"e
r¯ rA

#e
r¯ 0,

(ii) rA
#e
r¯ 0, rA

"e
r#¯®σR

"
}KR

""
" 0,

(iii) rA
"e
r¯ 0, rA

#e
r#¯®σR

#
}KR

##
" 0,

(iv) rA
"e
r#¯

σR

#
KR

"#
®σR

"
KR

##

KR

""
KR

##
®KR

"#
KR

#"

" 0, rA
#e
r#¯

σR

"
KR

#"
®σR

#
KR

""

KR

""
KR

##
®KR

"#
KR

#"

" 0.

5

6

7

8

(75)

The first solution corresponds to the linearly stable case when σR

"
! 0 and σR

#
! 0. The

second and third solutions have been analysed before in the context of the one-mode
analysis. The last solution results from the two-mode interactions. In order to
investigate the stability of the solutions we linearize (73) about an equilibrium solution
and find the eigenvalues of the resulting system to be

λ
",#

¯
C

""
C

##

2 91³0116
rA

"e
r# rA

#e
r#KR

"#
KR

#"

(C
""

C
##

)# 1"/#: , (76)
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where

C
""

¯σR

"
3 rA

"e
r#KR

""
rA

#e
r#KR

"#
,

C
##

¯σR

#
3 rA

#e
r#KR

##
rA

"e
r#KR

#"
.* (77)

We now observe that the finite-amplitude equilibria are stable only if KR

"#
KR

#"
! 0 and

C
""

C
##

! 0.
Introducing

r
"
¯ rA

#
rKR

##
r"/#, r

#
¯ rA

"
rKR

""
r"/#, µ

"
¯®σR

#
, µ

#
¯®σR

"
, (78)

b¯®KR

#"
}rKR

""
r,

c¯®KR

"#
}rKR

##
r,

d¯ ( 1 if KR

""
! 0

®1 if KR

""
" 0,

(79)

and inverting time tU®t we can rewrite system (73) as

rd
"
¯ r

"
(µ

"
r#

"
br#

#
), rd

#
¯ r

#
(µ

#
cr#

"
dr#

#
), (80)

which was analysed in detail by Guckenheimer & Holmes (1983). Here we took into
account that, as discussed in the next Section, KR

##
! 0 for all values of governing

parameters considered. Note that although it is possible to classify the fixed points by
considering only equation (80), in order to interpret the complete flow dynamics one
should consider the four-dimensional system which includes the disturbance phases.

9. Results

All numerical results are obtained using a Chebyshev pseudo-spectral approximation
in the horizontal direction (Suslov & Paolucci 1995a, b). The number of modes used in
all cases is 48, which convergence tests have shown to guarantee the accuracy of all
results to within 1%. The resulting algebraic problems are solved in double precision
using the following routines from the IMSL mathematical library (IMSL 1989) : 
to solve the basic flow problem (22),  and  to solve the generalized
eigenvalue problem (27) for α" 0 and α¯ 0 respectively,  to solve for the mean
flow correction (equations (29)–(30)), and  to solve for the second harmonic and
for χ

"
((35) and (40) respectively). Furthermore, the coupled Landau equations (70) are

integrated in time using a Gear algorithm as implemented in routine . We also
note that in reporting all numerical results in the Boussinesq limit of ε' 1
(corresponding to the mathematical limit εU 0) we actually use the value of ε¯
5¬10−$ for computations.

9.1. Validity of Landau equations

Equation (59) has been derived using two explicit assumptions: the disturbance
amplitude is small and there exist multiple timescales in the problem. These conditions
do not impose any direct limitation on the region of applicability in parameter
space, but restrict the initial disturbance to consist of only a small-amplitude mode
corresponding to a chosen wavenumber α (in other words, it is assumed that an
arbitrary initial disturbance asymptotically approaches the mode with wavenumber α).
The choice of the fast timescale t

!
is associated with the exponential development of the

disturbance while it is small. After the disturbance reaches the finite amplitude such
that the nonlinear terms become important, the temporal behaviour of the disturbances
deviates from exponential (‘ slows down’). This is characterized by different long
timescales. Thus the fact that the exponential disturbance growth or decay always
changes its character in the vicinity of equilibrium justifies the introduction of the
proposed timescales which are functions of the amplitude size only but do not require
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F 1. (a) Grashof number, (b) wavenumber, (c) real and (d ) imaginary parts of the first Landau
constant, and ( f ) wavespeed as functions of ε for δ¯ 0 (solid lines), δ¯ 0.15 (dash-dotted lines), and
δ¯ 0.3 (dashed lines).

the linear amplification}decay rate rσRr to be essentially small. Then (59) describes the
dynamics of the problem correctly as long as the disturbance amplitude remains small.
A wavenumber selection mechanism is missing. However, it is generally assumed (but
rarely discussed) that the wavenumber selected by the flow corresponds to the
wavenumber having maximum amplification based on linear analysis. In most regions
of parameter space considered in this work, the equilibrium amplitude resulting from
(59) is sufficiently small to allow us to track the complete process of disturbance growth
by keeping only terms up to third order in amplitude. In order to illustrate this, some
nonlinear results are plotted in figure 1 as functions of ε. Results are given for values
of δ3 (Gr®Gr

c
)}Gr

c
¯ 0, 0.15, and 0.3, denoted by solid, dash-dotted, and dashed

lines respectively. All lines corresponding to the buoyant instability are plotted only for
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0.45# ε# 0.6 where buoyancy effects are significant. The wavenumbers corresponding
to the largest linear growth rate in supercritical regimes are slightly lower than the
respective ones on the critical curves and are presented in figure 1b).

Although the disturbance amplitude itself remains small, in general this is not
sufficient for the amplitude expansion to be valid as discussed in Stuart (1960),
Fujimura (1988), Benney & Bergeron (1969), Davis (1969), Benney & Maslow (1974)
and Haberman (1972). It is shown that the uniformity of the expansion can be violated
for a certain parameter range owing to the nearly singular behaviour of the linear
eigenfunctions in critical layers. Such a situation typically arises in Poiseuille-type
flows. As discussed in Suslov & Paolucci (1995a), the shear instability in natural
convection flow in a vertical enclosure is associated with the inflection point, and the
singularity in the Orr–Sommerfeld equation in this case is removable. Thus in this case
the expansion is expected to remain uniform as long as rAr' 1. On the other hand,
for the buoyant instability, the location of the critical layer does not coincide with
the inflection point, and the restriction for the amplitude αRe rAr$/#' 1 given in
Fujimura (1988) for Poiseuille-type flows can be estimated for the convection flow as
o3αGr rAr$/#}216' 1. The numerical coefficient is based on the maximum value of the
basic flow velocity (see Suslov & Paolucci 1995a). This solution is satisfied for all
regimes discussed in the present paper.

Figures 1(c) and 1(d ) show the behaviour of the first Landau constant K. Its real
part is negative for ε! εkkE 0.528. This means that the bifurcation is supercritical for
Boussinesq and slightly non-Boussinesq flows. The value of K is real in the limit
εU 0 (see figure 1d ). This is consistent with previously known Boussinesq results
reported in Mizushima & Gotoh (1983) for Pr¯ 7.5 and in Fujimura & Mizushima
(1987) for Pr¯ 0. At εkk (vertical dotted line in figure 1c, e) the real part of the Landau
constant corresponding to the shear-driven instability changes sign to positive,
reflecting the fact that the bifurcation becomes subcritical for ε" εkk. The equilibrium
amplitude defined by (62) is plotted on figure 1(e). It remains small for ε# 0.45,
justifying the validity of the amplitude expansion (A12). In the vicinity of εkk the
amplitude rA

e
r grows unboundedly according to (62). Thus, in order to obtain the

saturation in the regions where the type of bifurcation changes, we must retain higher-
order terms in formulae (13)–(18), and proceed to the higher-order Landau equation,
but this is beyond the scope of our present work. The bifurcation associated with the
buoyancy mode is always supercritical (the real part of the corresponding Landau
constant is negative as shown on figure 1c). As a consequence, the equilibrium
amplitude for the buoyant instability does not exhibit any singularity and remains
sufficiently small for the present analysis to be valid.

As noted earlier, in deriving (59) we assumed that the initial disturbance could be
represented by a single disturbance wave corresponding to an arbitrary wavenumber
α which remains fixed as the instability develops. This assumption is valid in general
only if the two leading eigenvalues σ

"
(α) and σ

#
(α) (which are not conjugate) are very

well separated. This is found to be the case in the critical (see figure 2a, e) as well as
in the sub- and supercritical regimes considered in the present work. Consideration of
only one mode also poses an implicit limitation on the wavenumber range in which the
analysis is valid. In order to illustrate this we refer to figure 2 where real and imaginary
parts of the four leading eigenvalues and the first Landau constant associated with the
most unstable disturbance mode are plotted as functions of the wavenumber for the
shear-dominated instability in the Boussinesq limit (figure 2a—d ) and for ε¯ 0.536
(figure 2e–h), where the shear and buoyant modes compete with each other. The thick
solid lines (which we shall call T for short) in figure 2(a, b, e, f ) represent the eigenvalue
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c
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with the largest real part, σ
"
(α). The other eigenvalues are plotted with dashed lines.

In order to to give an easy geometrical interpretation of the resonance conditions (36)
and (37), in figures 2(a) and 2(e) we show the curves σ(α)¯ 2σ

"
(α}2) as faint (F) lines

and σR(α)¯ "

#
σR
i
(0), i¯ 1,…, 4, as horizontal dotted (D) lines.

It can be easily seen that TF intersections (shown as open circles) and the respective
points with one-half wavenumber (shown as filled circles on T) give us pairs of points
where the 1:2 resonance between the fundamental disturbance mode (open circle) and
its second harmonic (filled circle) could possibly exist. In fact, condition (37) is exactly
satisfied in the Boussinesq limit for the pair of points denoted by circles in
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figure 2(a, b). Owing to this resonance, the value of the first Landau constant becomes
infinite at wavenumber labelled (v) in figure 2(a–d ), which in turn leads to a vanishing
equilibrium amplitude. Note that while lines (v) and (vi) (discussed below) appear to
coincide in the figure, they are found to be numerically distinct. Although our analysis
is incomplete in the vicinity of any resonant point, based on this result we can expect
that the competition between the two resonating harmonics will lead to the
fundamental mode decaying in favour of its second harmonic. This is exactly what is
observed in Fujimura & Mizushima (1987) and Fujimura (1992b), where the resonant
situation was analysed by deriving appropriate coupled amplitude equations.

In the non-Boussinesq regimes TF intersections and the respective points with one-
half wavenumber in figure 2(e) do not correspond to resonant interactions since the
instability is oscillatory in these cases (the disturbance wave speed c

""
¯®σI}α is

negative and deviates substantially from zero as can be seen from figure 1 f ), and
condition (37) is not satisfied for non-vanishing imaginary parts of the eigenvalues
(none of the empty circles in figure 2 f are TF intersections). Physically it means that
although the real amplification growth rates for the two harmonics are in resonance,
the phase speeds of the two waves are so different that the two harmonics do not
interact with each other. Consequently, the two disturbance waves are completely
decoupled from each other and the range of applicability of the one-mode analysis
becomes larger in non-Boussinesq regimes.

The TD intersections correspond to resonances between the mean flow correction
and disturbances with α¯ 0 (see conditions (36)). The vertical line (vi) in figure 2(a–d )
and lines (i), (ii), (iv), and (v) in figure 2(e–h) denote wavenumbers which correspond
to resonant interactions with the most unstable eigenmode at α¯ 0. Lines (i), (iv), and
(vii) in Figure 2(a–d ) and (iii) and (vi) in figure 2(e–h) denote wavenumbers that
resonate with the second α¯ 0 eigenmode. Lines (ii) and (iii) in figure 2(a–d ) and (vii)
in figure 2(e–h) denote wavenumbers that resonate with the third α¯ 0 eigenmode.
Again, the singularity of the first Landau constant suggests the decay of the resonating
periodic disturbances in favour of the mean flow. We also note that this type of
resonance is equally possible in both Boussinesq and non-Boussinesq regimes, since, as
can be seen from figures 2(b) and 2( f ), we have σI

i
(0)¯ 0, i¯ 1, 2,… . Although not

shown here, this result remains true for all values of ε.
The linear investigation also showed that σR

i
(0)! 0, i¯ 1, 2,… , for all values of ε

and Gr. This means that disturbances that decay according to linear theory can
resonate with the α¯ 0 modes. It can be easily shown by generalizing condition (31)
that such resonances arise at the 2kth order of ε in expansion (A12), if

σR
i
(0)¯ 2kσR

i
(α), σI

i
(0)¯ 0. (81)

Since the number of eigenvalues with negative real parts is infinite, one can expect that
for any α such that σR

"
(α)! 0 there always exists a pair (i(α),k(α)) for which (81) is

satisfied (here i corresponds to the number of the eigenvalue in the ordered infinite
sequence 0"σR

"
(0)"…"σR

i
(0)"… and k is the order at which the resonance

arises). Strictly speaking, this means that the infinite single-mode expansion (A12) is
not uniformly valid for subcritical flows (see similar discussions in Davey & Nguyen
1971 and Herbert 1983). In order to resolve this problem one would have to modify the
expansion by adding the resonating modes (which depend on all timescales) starting at
the ε#k−"-order. It is important to note that the expansion for the lower orders in ε
remains unchanged.

Summarizing, we conclude that the proposed weakly nonlinear analysis and
derivation of the cubic Landau equation can be justified for a band of wavenumbers



Nonlinear analysis of con�ection in a �ertical enclosure 19

centred at the critical value, within which no resonances are possible for disturbances
up to cubic order in ε (for example, the wavenumber intervals between lines (vi) and
(vii) on figure 2(a–d ) and between lines (i) and (ii), and (iv) and (v) on figure 2(e–h). For
α far from the critical value one should first examine the eigenvalues of the linearized
problem at α¯ 0 and 2α in order to find out whether a resonance is possible. If a
resonance is present, a different form of the expansions is necessary as was noted
earlier, although the overall procedure remains the same. In being aware of the
possibility of different resonances, we did not find any 1:2 resonance in the non-
Boussinesq regimes because of the oscillatory nature of the disturbances and stayed
away from mean flow resonances at second order in ε (for numerical results in
subcritical regimes which we present below we found k" 10 except at the points which
have been discussed previously). Thus we conclude that the proposed theory can be
successfully applied in a wide region of (ε,Gr,α) space as long as the amplitude remains
sufficiently small.

We should remember that the single-mode analysis is also not adequate in the
vicinity of the codimension-2 point (εk,Gr

c
(εk))E (0.536, 13500) where two physically

different modes, shown by squares in figure 2(e), can become unstable and compete
with each other. Near this point, shown in more detail in figure 13, the disturbance
amplitudes are properly described by the coupled Landau equations (70). Here, α

"
¯

2.6370 and α
#
¯ 0.8880, and none of the conditions (66) are satisfied in the vicinity of

(εk,Gr
c
(εk)). Thus no wavenumber resonances are possible.

9.2. Disturbed flow

We first present the characteristics of the disturbed flow F averaged over the
disturbance wavelength, where F¯F

!!
rAr#F

#!
, and F

!!
and F

#!
stand for basic flow

and mean flow correction quantities respectively. While the value of the amplitude A
depends strongly on the distance from the critical point, F

#!
changes slightly. For this

reason it is convenient to present the quantities F
#!

evaluated at the critical points
(Gr

c
(ε),α

c
(ε)) (or along the solid curves in figure 1a, b) in examining the physical

mechanisms of instability.
As we increase the temperature difference between the walls, the temperature and the

density distributions in the enclosure deviate from the linear ones due to nonlinear
property variations. As a consequence, in order to satisfy the mass conservation
condition, the basic flow thermodynamic pressure decreases as shown in figure 3(a)
(for a more extensive discussion of the basic flow see Chenoweth & Paolucci 1986 and
Suslov & Paolucci 1995a). Analysis of shear- and buoyancy-driven instabilities shows
that both disturbances lead to a further decrease in thermodynamic pressure (see figure
3b), thus amplifying the non-Boussinesq effects.

When the temperature difference between the walls is increased the local density in
the vicinity of the hot wall becomes smaller because of two effects : a drop in the
thermodynamic pressure and an increase in the local temperature. On the other hand,
near the cold wall both the thermodynamic pressure and the local temperature decrease
thus affecting the local density in opposite directions. Subsequently, the fluid in the
cavity has the overall tendency to move up due to this buoyancy effect. However, the
average mass flux must remain zero since the cavity is closed. This condition induces
a positive vertical pressure gradient Π{

!!
, shown in figure 3(c), preventing a net upward

flow. The form of the plot for Π{
!!

resembles the critical curves Gr(ε) shown in figure
1(a) since the buoyancy forces to be opposed by the induced pressure gradient are
proportional to the Grashof number. In addition, since the largest disturbances are
located in the high-density region near the cold wall (see Suslov & Paolucci 1995a),
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F 5. As figure 4 but for the non-Boussinesq case of ε¯ 0.3.

they force the disturbed flow to move down. But again, in order to satisfy the zero mass
flux condition, a negative disturbance pressure gradient Π{

#!
is induced as shown in

figure 3(d ).
In the Boussinesq limit the temperature and density disturbances, shown in figures

4(c) and 4(d ), are negligible and the instability has a purely shear character. As can be
seen from figure 4(b), the velocity disturbance tends to reduce the maximum velocity
gradient and subsequently the maximum shear stress. From figure 4(a) we see that the
disturbance also induces a weak mean horizontal velocity component which is of order
ε, and subsequently vanishes in the Boussinesq limit (εU 0). The qualitative character
of the shear disturbances remains the same in the slightly and strongly non-Boussinesq
regimes as can be seen from figures 5 and 6, although disturbance buoyancy effects are
not negligible any more. The locations of the maximum and minimum values of the
vertical component of the disturbance velocity correspond closely to the locations of
disturbance density minima and maxima, respectively (see figures 5b, d and 6b, d ).
Consequently, the additional buoyancy effects on the disturbance tend to reduce
the shear. The scaling parameter s¯max r�

!!
r}max r�

#!
r¯max r�

""
r}max r�

#!
r (see

normalization (28)), noted in figures 4, 5 and 6 for the shear instability, decreases with
ε, thus confirming that the relative role of the velocity disturbances becomes larger in
the non-Boussinesq regimes when buoyancy effects become important.

For the buoyant mode depicted by dash-dotted lines in figure 6, the magnitude of the
vertical velocity disturbance drops substantially (as indicated by the increase in scale
factor). The forms of the distributions of mean flow correction quantities associated
with the buoyant disturbance differ substantially from the corresponding ones
associated with shear. They amplify the upward motion near the hot wall and
counteract the downward motion in the neighbourhood of the cold wall. The
disturbance density distribution has only one extremum, a maximum, whose position
coincides with the location of the largest negative vertical velocity disturbance (see
dash-dotted line on figure 6d ). Thus, when the temperature difference between the
walls exceeds the critical value of εk for Grashof numbers larger than critical a cooler
region develops in the middle. Owing to its higher density, the fluid in the middle falls
and thus causes the fluid closer to the walls to move up relative to it.
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and the non-Boussinesq case of ε¯ 0.536. The scaling

parameter s is introduced for plotting purposes.

Several bifurcation diagrams for the most unstable disturbance modes at given
values of ε are presented in figure 7(a). The supercritical bifurcations associated with
the shear instability for the Boussinesq and slightly non-Boussinesq regimes are quite
similar to each other (lines i and ii). The steepness of the bifurcation curves increases
with ε, indicating that the disturbances in the non-Boussinesq regimes are more
sensitive to a change in Grashof number. The equilibrium amplitude dependence on ε
and on the relative distance δ(ε)¯ (Gr®Gr

c
(ε))}Gr

c
(ε) from the bifurcation point for

ε% 0.4 is approximately given by

rA
e
rE 0.20(10.11ε#7.83ε%) δ"/#(ε). (82)

A further increase in the temperature difference leads to the appearance of the
buoyant instability mode for Gr"Gr

c
(dash-dotted line iii). At ε¯ εkk the bifurcation

diagram for the shear mode becomes singular (dashed line iv). This is the boundary
separating regions of supercritical and subcritical bifurcations for the shear instability.
At the same time the bifurcation curve for the buoyancy mode moves closer to the
critical value of the Grashof number (dash-dotted line iv). Finally, at the codimension-
2 point, the buoyant mode bifurcation curve meets with the one corresponding to the
subcritical shear mode (line v). When the value of ε is increased further the buoyant
instability overcomes the shear one, although as can be seen from figure 7(a) the two
finite-amplitude disturbances can coexist in the supercritical region because of the
subcritical character of the shear bifurcation (line vi). For higher values of ε the shear
mode bifurcates at substantially larger values of the Grashof number; thus in slightly
supercritical regimes one can expect the existence of only the finite buoyant disturbance
(line vii). Note that the non-monotonic behaviour of the subcritical shear bifurcation
curves is a reflection of the existence of a resonance between the mean flow correction
and the α¯ 0 harmonic for Grashof numbers smaller than the corresponding critical
value for the shear instability.

From figure 7(b) we see that for both instabilities the wavenumber corresponding to
the most rapidly growing disturbance decreases with Grashof number. From figure
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7(c) it follows that in the Boussinesq limit the finite-amplitude disturbances do not
change the stationary character of the instability since the equilibrium wave speed
c
e
3 c

""
®rA

e
r#KI}α is zero. This is consistent with the results of Fujimura & Mizushima

(1987) and Mizushima & Gotoh (1983) for Pr¯ 7.5 and the computational results of
Lee & Korpela (1983) and Mizushima (1990) for Pr¯ 0.71. Since under non-
Boussinesq conditions c

""
! 0 and KI! 0 (see figure 1d, f ), the finite-amplitude shear

disturbance decreases the absolute values of the wave speed in comparison with the one
predicted by the linear theory. In strongly non-Boussinesq regimes, the equilibrium
amplitude of the shear disturbance becomes so large (dashed line iii on figure 7a that
the equilibrium wave speed changes its sign (dashed curve iii on figure 7c). This means
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that the growing shear disturbance is displaced from the cold wall region towards the
region of upward motion closer to the hot wall. In contrast, the larger-amplitude
buoyant disturbance remains located near the cold wall and moves slightly faster
downward.

Finally, in figure 8, we show the instantaneous disturbed flow fields at equilibrium
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states for supercritical regimes. All quantities are evaluated from expansions (13)–(16)
truncated to second order in amplitude which can be rewritten as

W¯w
!!

(x)2 rA
e
r rw

""
(x)r cos [α(y®c

""
t)} (x)θ(t)]rA

e
r#w

#!
(x)

2 rA
e
r# rw

##
(x)r cos [2(α(y®c

""
t)} (x)θ(t))], (83)
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T 1. Components of the mean disturbance kinetic energy at the critical points. All quantities
are multiplied by the factor 10&}Gr#

c
.

where W denotes a specific dependent variable, } (x) is the spatial phase variation, and

θ(t)¯ θ(0)KI& t

!

rA(τ)r#dτ (84)

is the temporal phase variation which is the solution of (61). For plotting purposes we
select values of time corresponding to θ(t)¯ 2πn, n¯ 0, ³1, ³2, … . All fields are
plotted for the same range of vertical coordinate, thus one can see how the disturbance
wavelength changes under non-Boussinesq conditions. The shear instability decreases
the total mean flow maximum by a substantial amount under non-Boussinesq
conditions. In contrast, the buoyant instability increases the maximum upward
velocity. In all cases the mean flow remains essentially vertical although one can see a
slightly non-parallel pattern in the middle part of the cavity in the non-Boussinesq
regimes (see first row of plots in figure 8). The light (dark) areas on the plots for velocity
and temperature fields correspond to the local maxima (minima) of the kinetic and
thermal energy respectively (see the next subsection). We see that the location with
largest kinetic energy shifts towards the cold wall as the temperature difference is in-
creased. Simultaneously, the initially parallel flow becomes wavy due to shear dis-
turbances. The location of the kinetic energymaximum for the buoyantmode for ε¯ 0.6
coincides with the position of the dense region near the cold wall as can be seen on the
plot of the thermal field. The plots in the fourth row represent the distributions of the
vertical dynamic pressure gradient. Careful study of the pressure patterns indicates
that the location of the negative dynamic pressure gradient (dark shaded areas) always
corresponds to regions with lower temperature (and higher density). Thus, the dynamic
pressure gradient always opposes the buoyant motion of the fluid and successfully
dampens the buoyant instability mode for temperature differences below εk.

9.3. Kinetic and thermal energies of the disturbed flow

To get deeper insight into the instability physics we look at the distribution of the mean
kinetic energy defined as

E
k
O(rAr%)¯

1

2λ&
y!+

λ/#

y!−
λ/#

ρ(u#�#) dy¯E
k!!

rAr#E
k#!

O(rAr%). (85)

We split the kinetic energy into parts associated with vertical and horizontal motions
such that

E
k!!

¯Ex
k!!

Ey
k!!

, E
k#!

¯Ex
k#!

Ey
k#!

, (86)
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F 9. Basic flow (solid lines) and the mean flow correction kinetic energy components for shear
(dashed lines) and buoyant (dash-dotted lines) instabilities for Gr
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ε' 1, (c, d ) for ε¯ 0.3, and (e, f ) for ε¯ 0.536. The scaling parameter e is introduced for plotting
purposes.
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It can be deduced from the linear stability results given in Suslov & Paolucci (1995a,
b) that ρ

""
¯O(ε) as εU 0. From numerical computations one can also show that
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¯O(ε) as εU 0. Then, consistent with the classical Boussinesq results, we note that

lim
εU

!

Ey
k#!

¯ (r�
""

r#�
!!

�
#!

))
εU

!

since lim
εU

!

ρ
!!

¯ 1.

These estimates in the Boussinesq limit are confirmed by the numerical results given in
table 1. From figure 9 we see that as the temperature difference between the walls
increases, the kinetic energy components associated with the vertical motion become
more concentrated in the cold region. Note that similar to figures 4–6, in the non-
Boussinesq regime the scaling parameter e¯max (Ey

k!!
)}max (rEy

k#!
r) decreases for the

shear mode. The shear instability always tends to make the total mean kinetic energy
profile more uniform, taking the energy away from the basic flow in high-speed regions
near the walls and transferring it to the nearly stationary region in the middle. The
energy associated with the induced horizontal motion remains an order of magnitude
smaller than that associated with vertical motion. It is always concentrated in the
middle part of the enclosure, although its maximum moves slightly towards the cold
wall where the most energetic part of the basic flow is located when ε is increased.
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Comparing the behaviour of the disturbance energy maxima, we can deduce that the
vertical velocity disturbances are born mostly in the region with a high velocity
gradient and, subsequently, a large shear stress near the cold wall. The horizontal
motion is induced near the vertical midplane. The distribution of the kinetic energy
associated with this motion is symmetrical in the Boussinesq regime. The symmetry is
broken in non-Boussinesq regimes: the right-hand of the two maxima of figure 9(b)
disappears almost completely as ε increases (see figure 9d, f ), while the left-hand
maximum survives, but moves further away from the hot wall.

From figure 9(e) we also see that the buoyancy disturbance extracts the energy from
the basic flow near the cold wall and transfers it to the developing dense region closer
to the middle. The left-hand negative minimum corresponds to the location where the
energy is extracted from the basic flow in favour of the induced horizontal motion (see
figure 9 f ) which transports the fluid from the less-dense hot region towards the denser
core region.

In table 1 we illustrate the integral effect of the different disturbance components on
the kinetic energy of the flow. Here the angle brackets denote integrations over the
cavity width. We see that as ε is increased, the energy associated with the horizontal
motion first increases slightly while the overall disturbance intensity becomes larger. As
buoyancy begins to play a significant role, it slows down the horizontal motion leading
to a more intense motion in the direction of gravity : the contribution of the buoyant
disturbance to the horizontal motion is much smaller than that of the shear one. From
table 1 we see that the interaction between the basic flow and the mean flow correction
(©ρ

!!
�
!!

�
#!

ª) associated with the shear disturbance decreases the total kinetic energy
©E

k#!
ª of the fluid. This interaction also determines the major kinetic energy transfer

mechanism for the shear instability. On the other hand, for the buoyant mode, all the
components of the disturbance kinetic energy are approximately of the same order and,
in contrast to the shear instability, the interaction with the disturbance density field
(©ρ

#!
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}22Re ²ρ
""

�$
""

´ �
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ª) increases the kinetic energy of the flow.
The evolution equation for the averaged kinetic energy components can be written

as
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where subscripts µ, Π and B denote contributions of the viscous, pressure and buoyant
forces respectively:
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The different components of the disturbance kinetic energy balance equations obtained
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F 10. The average kinetic energy for (a) the basic flow (solid lines) and (b) shear (dashed lines)
and buoyant (dash-dotted lines) disturbances evaluated at the critical points as functions of ε.
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Instability type Shear Shear Shear Buoyant Buoyant

©Σx
µª}©E

k#!
ª 2.25 2.21 2.03 ®1.97 ®2.31

©Σx
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Gr}(2ε)©Σy
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ª 69.5 70.2 72.7 40.4 46.1

T 2. Terms entering the averaged kinetic energy evolution equation and evaluated at the
critical points.

for various values of the temperature difference are given in table 2. From there we
deduce that : (a) the viscous dissipation always tends to reduce the modulus of the
unsteady disturbance amplitude since the viscous terms contribute negatively to the
kinetic energy balance, (b) the only force inducing the horizontal motion is the
horizontal pressure gradient Σx

Π, and (c) the integral role of the vertical pressure
gradient Σy

Π is minor in comparison with the buoyancy force Σy
B

which is primarily
responsible for the growth of the kinetic energy of the vertical component of the
disturbed motion.

In concluding the disturbance kinetic energy study we note from figure 10(a) that the
basic flow motion becomes slightly more energetic when the temperature difference
between the walls increases. From figure 10(b) we see that the developing shear
disturbances tend to reduce the total kinetic energy (©E

k#!
ª! 0). In contrast, from the

same figure, we see that the buoyant disturbance increases the flow kinetic energy
slightly.

The mean thermal energy of the fluid in the cavity is given by
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F 11. The average heat flux for (a) the basic flow and (b) disturbances at critical points
for the shear (dashed line) and buoyant (dash-dotted lines) disturbances as functions of ε.

and according to figure 3(b) both shear and buoyant instabilities diminish the total
mean thermal energy of the fluid in the cavity.

Note that since the vertical walls of the cavity are conducting, the fluid in the cavity
can exchange the energy with the ambient during the transient period. This energy
exchange is more intense when the instability is driven by shear since in this case both
the thermal energy and the kinetic energy of the fluid are decreased by the developing
disturbance. In the buoyant instability case part of the thermal energy is converted to
the kinetic energy and does not leave the enclosure, thus the change with the ambient
is less intense.

9.4. Heat transfer

Another important characteristic of the flow is the heat flux across the cavity. In
dimensionless form this is given by the Nusselt number

Nu¯
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which is a ratio of the average heat flux to the conduction heat flux. In (96) we
recognize that the conduction heat flux is
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and it decreases with ε in accordance with the Taylor series expansion of the basic flow
solution as
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and is shown on figure 11(a). The convective component of the average heat flux,
which is associated with the disturbance field, is given by
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For Gr¯Gr
c
(ε) this quantity is shown in figure 11(b). A curve fit of these data for

ε% 0.4 gives
q
#!

rδ(ε)=!
¯ 8.56(11.02ε#1.14ε%). (100)
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contributions of the shear- and buoyancy-driven instabilities respectively. Symbols denote results of
the direct numerical simulation for free convection of air in a cavity of aspect ratio 20 computed in
the Boussinesq limit in Lee & Korpela (1983) (diamonds) and Mizushima (1990) (squares).

From the figure we see that the convective component of heat transfer increases rapidly
with ε owing to the development of disturbances associated with shear, while the
contribution from the buoyant mode, although also positive, decreases as the
temperature difference between the walls increases.

Combining (82) with (98) and (100), for slightly supercritical regimes we obtain

(Nu®1)}δ(ε)E 0.34®0.44ε#5.77ε%. (101)

Relationships of similar type, (Nu®1)}δ¯ a, derived from quasi-linear theory were
reported for free and mixed convection Boussinesq flows in Gotoh & Ikeda (1972) and
Fukui et al. (1982), although the values of the correlation constant a (0.4551 and 0.6508
respectively) in those works differ substantially from the present result (0.34). Equation
(101), in fact, gives the slope of the Nusselt number curve for fixed ε as δU 0. The actual
behaviour of the average Nusselt number for finite values of δ deviates from the linear
relationship, as illustrated in figure 12. The average Nusselt number (96) is proportional
to the disturbance amplitude squared. On the other hand, q

#!
(see (99)) decreases with

δ and thus the Nusselt number deviates from linear dependence on δ. This was also
demonstrated in Mizushima & Gotoh (1983) for Pr¯ 7.5. We compare the values of
Nu predicted in the Boussinesq regime by the present analysis with those obtained by
direct numerical simulations of free convection of air in a cavity of aspect ratio 20 in
Lee & Korpela (1983) and Mizushima (1990) for δ¯ 0.5 and δ¯ 0.89. The weakly
nonlinear theory predicts values of Nusselt numbers which are 3–6% below the
computational results. This is easily explained if one recalls that in this work the
instability is modelled by a single mode, while a finite band of disturbances contributes
to the convective heat flux in the numerical simulations. From figure 12 it also can be
seen that non-Boussinesq effects intensify the convective heat transfer associated with
shear and buoyant disturbances.

9.5. Two-mode interactions

Numerical evaluations for the codimension-2 point give µ
"
¯µ

#
¯ 0, b¯ 10.836,

c¯®1.401 and d¯®1 (see (79) for definitions). This situation corresponds to Type 1c
(saddle point with two invariant lines r

"
¯ 0 and r

#
¯ 0) according to the classification

of degenerate fixed points given by Guckenheimer & Holmes (1983).
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right of the dashed line. The mean flow correction for the shear mode resonates with the α¯ 0
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Stable equilibria of different types can exist in the neighbourhood of the
codimension-2 point A shown in figure 13. Before we discuss these results we should
recall that the present analysis is able to predict only the existence of a subcritical
bifurcation to the right of the dashed line. A stable equilibrium for the subcritical
bifurcation is reached at substantially larger values of amplitude. Consequently, its
determination would require a higher-order expansion which is beyond the scope of the
present work. For this reason no stable equilibria were found in the region marked by
circles. The interaction of the two instability modes does not affect the basic flow in the
linearly stable regions: the only stable equilibria found there correspond to the zero-
amplitude pair. The interaction of the modes does not lead to their asymptotic
coexistence in the majority of the cases either : in most of the regions only one, linearly
unstable, mode ultimately survives. The characteristics of the two disturbances
(wavenumbers and wave speeds) are so different that the coupling between them does
not affect the asymptotic behaviour except in the region in figure 13 marked by stars.
There, mixed-mode disturbances are found to define the resulting flow. This region is
below the linear stability curve for the shear mode, indicating that the subcritical
bifurcation plays an important role even for small amplitudes. The dashed line in the
lower right corner of figure 13 denotes the points where our expansions are not
uniformly valid due to resonance between the mean flow correction and the α¯ 0 shear
disturbance wave. Consideration of such a resonance would require a three-mode
analysis and, possibly, higher-order expansions in order to find the equilibrium for the
subcritical bifurcation associated with the shear mode. Owing to the highly nonlinear
character of the governing equations, this would lead to an extremely complex
algebraic problem. We will treat the analysis of the flow in these regions by direct
numerical simulation which will be carried out in the future.

In figure 14 we present the evolution of two-mode interactions in phase space. It is
found that phase patterns for the points located to the left and the right of the dashed
line in figure 13 are topologically equivalent to Cases II (figure 14a, b, e) and VIa (figure
14c, d, f, g, h), respectively, as classified by Guckenheimer & Holmes (1983) by
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examining the unfoldings from the degenerate fixed point. Although we do not show
it here, we note that all flow patterns distinguished by Guckenheimer & Holmes for
Case VIa, including homoclinic orbits, exist in the vicinity of the codimension-2 point.

For Grashof numbers below the value corresponding to the codimension-2 point
(figure 14a–d ) the two modes cannot reach a stable finite-amplitude state sim-
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ultaneously. For smaller values of ε (plot a) the shear disturbance, being linearly
unstable, reaches a stable finite equilibrium, while the buoyant one rapidly decays
regardless of the initial conditions. The case when the basic flow is linearly stable with
respect to both disturbances is shown in plots (b) and (c). Comparing these two plots
we see that the subcriticality of the shear bifurcation introduces a saddle point (plot c).
The basic flow becomes conditionally stable since the shear disturbance can decay only
for an initial amplitude below a certain value. Further increase of the temperature
difference between the walls destabilizes the basic flow with respect to the buoyant
disturbances. The shear disturbance does not affect the asymptotic state unless its
initial amplitude is greater than some threshold. In the latter case the shear instability
becomes dominant although the basic flow is linearly stable with respect to shear
disturbances. If Gr!Gr

c
(εk) and we are far enough from equilibrium, from figure

14(a–d ) we see that the shear disturbance always dominates over the buoyant one even
when the latter is growing according to the linear analysis (the vertical flow towards
zero prevails in the amplitude trajectories).

The interaction between the shear and buoyant disturbances for Gr"Gr
c
(εk) in the

supercritical region (between the two solid lines on figure 13) destabilizes all equilibria
(figure 14 f ). As in the case of smaller ε the shear disturbance dominates over the
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F 16. Disturbed flow for the mixed instability mode at ε¯ 0.56, and Gr¯ 14000.

buoyant one causing its fast decay with time. It is expected that this shear mode will
saturate with inclusion of higher-order terms in amplitude in the analysis. For larger
values of ε and farther from the critical stability curve (see figure 13) the buoyant mode
becomes sufficiently strong to overcome the influence of the shear mode. As a result,
a mixed disturbance exists as shown in figure 14g). Further increase of the temperature
difference diminishes the relative role of the shear mode and its equilibrium amplitude
vanishes (see figure 14h). Comparing figure 14(a and e) and (d and h) we see that they
are qualitatively similar to each other and consequently we conclude that the character
of the phase portrait away from the codimension-2 point is defined only by the distance
from the respective critical points.

The path along which the disturbances approach their asymptotic states as well as
the time necessary to reach them depend strongly on the initial conditions. Two
possible scenarios corresponding to trajectories A and B in figure 14(g) are depicted in
figure 15. Trajectory A shows that the initially interacting finite disturbances in the
linearly unstable region can decay rapidly at first to very small values. This would at
first appear to be counterintuitive from a linear analysis standpoint. However, linear
analysis only tells us about asymptotic behaviour. The disturbances also can approach
the unstable equilibria and stay there for a substantial time before they finally reach the
stable equilibrium. For a different choice of initial conditions corresponding to
trajectory B in figure 14, the amplitude of the subcritical shear mode decays
exponentially at first, while the supercritical buoyant disturbance grows exponentially.
After some oscillations, the amplitudes eventually settle to their asymptotic values. As
the disturbances develop, the wave speeds corresponding to the shear and buoyant
modes change slightly but remain substantially different. Because of this, the phase
difference θ

"
®θ

#
between the shear and buoyant modes is always negative and its

absolute value increases rapidly with time. Thus no phase locking is observed between
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e
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rAr
e
¯ 0.080

Stable 4.0 17.0 3287.1 ®0.006 0.702

T 3. Mean kinetic and thermal energies at the different equilibrium states for the
representative point (ε,Gr)¯ (0.56, 14000).

the two modes. Since the phase shift between the two modes changes constantly the
flow pattern corresponding to the mixed disturbance also changes with time. For
simplicity, on figure 16 we illustrate the disturbed flow at the representative point (ε,
Gr)¯ (0.56, 14000) shown in figure 14( f ) at a particular moment when θ

"
¯ 2πm and

θ
#
¯ 2πn, where m and n are integers. Comparison with figure 8(d ) shows that the form

of the mixed disturbance is close to that of the buoyant mode while the shear
disturbance slightly increases the waviness of the resulting flow.

Finally, we analyse the effect of the two modes on the mean kinetic energy of the flow
at the same representative point. The components of the kinetic and thermal energies
computed using definitions (85)–(86) and (94)–(95) are given in table 3. The basic flow
becomes unstable due to the buoyancy disturbance (see trajectory A). This disturbance
reaches its unstable equilibrium amplitude value of 0.107 and thus increases the total
kinetic energy of the flow. Owing to its subcritical character, the shear disturbance
begins to develop at that point. It tends to reach saturation at the amplitude value of
0.048, leading to a decreasing amplitude of the buoyancy mode and to dissipation of
mean flow kinetic energy. The two modes equilibrate at some intermediate values of
amplitudes, resulting in a slight increase in the mean flow kinetic energy. Thus, we
conclude that the existence of the stable finite-amplitude equilibrium for all modes is
closely related to the disturbance energy production–dissipation balance associated
with the different instability mechanisms. Note also that the buoyant, shear and mixed
disturbances decrease the thermal energy of the fluid and that, in contrast to the
Boussinesq limit, the relative change of the fluid thermal energy is of the same order
as that of the kinetic energy for the non-Boussinesq regimes.

10. Conclusions

A weakly nonlinear theory is developed for flows described by the equations having
general nonlinearity. The theory is applied to the natural convection flow of air in a tall
differentially heated closed cavity for a wide range of Grashof numbers and
temperature differences. The flow is appropriately described by the low-Mach-number
equations. It is found that for small temperature differences the basic flow bifurcates
supercritically due to shear-driven disturbances. This bifurcation becomes subcritical
for larger temperature differences. In strongly non-Boussinesq regimes, the buoyant
disturbances become important and lead to a supercritical bifurcation of the basic flow.
The two disturbances compete with each other and both can reach finite asymptotic
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equilibrium amplitudes for a certain range of Gr and ε" εk. Detailed energy analysis
of the disturbed flow shows that the two disturbances have an opposite influence on the
mechanical energy of the flow, although both of them decrease the thermal energy of
the fluid in the cavity.

This work was partially sponsored by a fellowship from the Center for Applied
Mathematics of the University of Notre Dame.

Appendix A

Let us consider the problem

N(W®W
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;σ)¯ 0, N(0 ;σ)¯ 0, (A1)

where N is a nonlinear operator and σ is some complex parameter. For small
deviations ∆W¯W®W
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, after applying a Taylor series expansion, the general

nonlinear problem becomes
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which is specified for each k for a particular problem. Substituting expansion (11) into
(A2) we obtain
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where .
k

is a nonlinear operator of kth order. Then for the εmEm we have

.
"
(wW

mn
;σ, nα)3,(wW

mn
;σ, nα)

3 3
I"

i="

,(i)

"
(wW

mn
;σ, nα)
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nq=n

.
k
(wW

mpnq

;σ, n
q
α), (A 4)

where we note that .
"

is a linear operator.
Note 1. At order ε"E³

" we have

,(wW
"
³
"
;σ,³α)¯ 0. (A5)

This is an eigenvalue problem with generally complex eigenvalue σ and eigenvectors
wW

"
³
"

for a fixed wavenumber α.
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Note 2. If the sum on the right-hand side of (A4) is zero, then (A4) only has the
trivial solution provided that σ, defined by eigenvalue problem (A5), is not an
eigenvalue of

,(wW
mn

;σ, nα)¯ 0. (A6)

L If for m! 2 the only non-zero terms in expansion (11) satisfying problem
(A 1) are wW

!!
, wW

""
, and wW

"−"
, and σ is not the eigen�alue of problems (A 6) for m" 1, then

for all m" 1, wW
mn

1 0 only if mn is e�en and rnr%m.

Proof Let wW
ij
1 0 if ²(®1)i+j¯ 1, r jr% i´ for all i such that 0! i!m. Under the

assumptions of the lemma, it follows from (A4) that for k¯ 2, 3,…,

mn¯ 3
k
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i
p
3

k

q="

j
q
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k
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s
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s
)
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and

max (rnr®m)¯max 0)3k
q="

j
q)®3

k
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i
p1%max 03k
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(r j
s
r®i

s1¯ 0, (A8)

where we have used the triangle inequality.
For m¯ 2 we have from (A4)

n¯ 0: ,(wW
#!

;σ, 0)¯®.
#
(wW

""
,wW

"−"
;σ, 0),

rnr¯ 1: ,(wW
#
³
"
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³
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³
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5

6

7
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(A 9)

We note that for rnr¯ 1 we obtain the same eigenvalue problem as (A5), thus
wW

#
³
"
¯wW

"
³
"
. Since ε is just a formal expansion parameter, we can redefine εε#U ε

such that (εwW
"
³
"
ε#wW

#
³
"
)E³

"¯ (εε#)wW
"
³
"
E³

"U εwW
"
³
"
E³

". Effectively this means
that without any loss of generality we can take wW

#
³
"
3 0. Next, using Note 2, we

conclude that wW
#n

1 0 only if 2n is even and rnr% 2. Repeating the above argument
for m¯ 3, 4,…, we prove the lemma by induction. *

We further assume that wW
mn

can be written in the separable form

wW
mn

¯ f
mn

(A, rAr)w
mn

(x), f
m−n

¯ f $
mn

, w
m−n

¯w$
mn

, (A 10)

where εA¯O(ε) and A depends only on time. Taking into account the polynomial
character of the nonlinearity in the problem, it is convenient to choose f

mn
¯Ap rArq,

p, q& 0, such that pq¯m and p¯ n, or

f
mn

¯
1

2

3

4

An rArm−n, n& 0

(A*)−n rArm+n, n! 0.
(A11)

Subsequently we rewrite expansion (11) in the form

W¯ 3
¢

k=!

ε#k rAr#kw
#k!

 3
¢

m="

3
[#m−$−(−")

m
]/%

k=!

εm rArm−n[(AE )nw
mn

c.c.], (A 12)

where n¯ 2k[3(®1)m]}2, and c.c. denotes the complex conjugate. The first and
second sums represent a non-periodic mean flow and periodic disturbance modes
respectively.
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Appendix B

Elements of (Aα)m,n
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For the specific variable properties of air we have
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Appendix C

Let us consider the expansion

w(t,x)¯A(t)w
""

(x)…A(t) rA(t)r#w
$"

(x)… , (C 1)

where w
""

(x) is an eigenfunction of the problem

(AσB)w
""

¯ 0 (C2)

and w
$"

(x) is a solution of the problem

(A(σ2σR)B)w
$"

¯ g(w
""

)KBw
""

(C 3)

typically arising at the third order of the amplitude expansion (the right-hand-side g
has cubic nonlinearity and K is the Landau constant to be specified). If σR¯ 0 and w

""
is normalized as, say, w

""
(x

!
)¯ 1, then K is defined uniquely by the solvability
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condition. If σR1 0, (C 3) is solvable for any K. To fix the problem, Herbert (1983)
suggests introducing a local restriction for higher-order disturbance terms, i.e. he
extends system (C3) to

(A(σ2σR)B)w
$"

®KBw
""

¯ g(w
""

), w
$"

(x
!
)¯ 0, (C 4a, b)

in which case K is defined uniquely. Provided σRKR! 0, from the subsequent Landau
equation one finds the equilibrium amplitude rA

e
r¯ (®σR}KR)"/#. Subsequently, from

(C1) we have that
rw

e
(x

!
)r¯ (®σR}KR)"/#. (C 5)

Let us repeat the procedure but now choosing an arbitrary x
"
1x

!
to find the

new value of the Landau constant K «. Now renormalize the eigenfunction of (C2),
which we call w!

""
(x), by taking w!

""
(x

"
)¯ 1 so that w!

""
(x)¯ κw

""
(x), where

κ¯w
""

(x
!
)}w

""
(x

"
). Subsequently, the equivalent system (C4) can be rewritten as

(A(σ2σR)B)w!

$"
®κK «Bw

""
¯ κ rκ#g(w

""
), w!

$"
(x

"
)¯ 0. (C 6a, b)

Furthermore, the new equilibrium amplitude is rA!
e
r¯ (®σR}KR«)"/# and from (C1)

(now with A«, w!

""
, and w!

$"
) we have

rw
e
(x

!
)r¯ (®σR}KR«)"/# rκ®(σR}KR«)w!

$"
(x

!
)r. (C 7)

For consistency with (C5) we must have

0KR

KR«1"/# )κ®
σR

KR« w!

$"
(x

!
))¯ 1. (C 8)

Unfortunately, numerical evaluations show that in general this is not true. Note also
that the choice

K «¯ rκr#K, w!

$"
¯ κ rκr#w

$"
(C 9)

makes the first equation in (C6a) identical with the first equation in (C4a). But then
it follows from (C6b) that w

$"
(x

"
)¯ 0. Since x

"
is arbitrary, then w

$"
3 0. Obviously,

this cannot be true. The reason for this inconsistency is that Herbert proposes
assessing global quantities (amplitude and Landau constant) by looking at some local
characteristic (the solution at a particular point). Note that if instead of using a local
property of the solution, we introduce the global condition w

$"
vw

""
, as demonstrated

in §7, this inconsistency is completely eliminated.
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